Thursday 23 November 2017

Gleitende Mittlere Frequenzantwort


Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, Die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi / 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen sind nur um einen Faktor von etwa 1/10 (für den 16-Punkt-Bewegungsdurchschnitt) oder 1/3 (für die Vierpunkt-gleitender Durchschnitt) gedämpft. Wir können viel besser als das. Der oben genannte Plot wurde durch den folgenden Matlab-Code erzeugt: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-Iomega)) H8 (1/8 ) (1-exp (-iomega)) - (1-exp (-iomega)) - Geispiel (Omega (H4) abs (H4) abs (H8) abs (H16) Achse (0, pi, 0, 1) Copyright-Vervielfältigung 2000- - Universität von Kalifornien, BerkeleyFrequenzantwort von Moving Average Filter und FIR Filter Vergleichen Sie den Frequenzgang des gleitenden Durchschnitts Filter mit dem des regulären FIR-Filters. Stellen Sie die Koeffizienten des regulären FIR-Filters als Folge von skalierten 1s ein. Der Skalierungsfaktor ist 1 / filterLength. Erstellen Sie ein dsp. FIRFilter-Systemobjekt, und legen Sie seine Koeffizienten auf 1/40 fest. Um den gleitenden Durchschnitt zu berechnen, erstellen Sie ein dsp. MovingAverage-Systemobjekt mit einem Schiebefenster mit der Länge 40, um den gleitenden Durchschnitt zu berechnen. Beide Filter haben die gleichen Koeffizienten. Der Eingang ist Gaußsches weißes Rauschen mit einem Mittelwert von 0 und einer Standardabweichung von 1. Stellen Sie den Frequenzgang beider Filter mithilfe von fvtool dar. Die Frequenzantworten entsprechen genau, was beweist, dass das gleitende Mittelfilter ein Spezialfall des FIR-Filters ist. Zum Vergleich den Frequenzgang des Filters ohne Rauschen. Vergleichen Sie den Frequenzgang des Filters mit dem des idealen Filters. Sie können sehen, dass der Hauptlappen im Durchlassbereich nicht flach ist und die Wellen im Stopband nicht eingeschränkt sind. Der Frequenzgang des gleitenden Durchschnittsfilters stimmt nicht mit dem Frequenzgang des idealen Filters überein. Um ein ideales FIR-Filter zu realisieren, ändern Sie die Filterkoeffizienten zu einem Vektor, der keine Folge von skalierten 1s ist. Der Frequenzgang des Filters ändert sich und neigt dazu, sich näher an die ideale Filterantwort zu verschieben. Entwerfen Sie die Filterkoeffizienten anhand vordefinierter Filterspezifikationen. Beispielsweise ein FIR-Filter mit einer normierten Grenzfrequenz von 0,1, einer Durchlaßbandwelligkeit von 0,5 und einer Stoppbanddämpfung von 40 dB. Verwenden Sie fdesign. lowpass, um die Filterspezifikationen und die Designmethode zu definieren, um den Filter zu entwerfen. Die Antwort des Filters im Durchlaßbereich ist nahezu flach (ähnlich der idealen Reaktion), und das Stoppband hat Gleichstromgrenzen eingeschränkt. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Siehe auch www. mathworks / trademarks für eine Liste anderer Marken, die Eigentum von The MathWorks sind. Weitere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wählen Sie Ihr Land Ich muss einen gleitenden Durchschnitt Filter, der eine Cut-off-Frequenz von 7,8 Hz. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall verwenden Frequenzbereich Filter ndash user19373 Feb 3 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang ist Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Größenreaktion des Filters H (Omega). Mit ein paar einfachen Handgriffen können wir, dass in einer leichter zu begreifen Form erhalten: Das ist nicht aussehen kann leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Ff / fs: Der umgekehrte Wert dieser Formel ist für große N asymptotisch korrekt und hat ungefähr 2-Fehler für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpassfilters (Einpol-LPF) mit einer gegebenen -3dB-Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl der MA und der 1. Ordnung IIR LPF -20dB / Dekade Slope im Stop-Band (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei Fk hat / N und einer 1 / f-Evelope hat das IIR-Filter nur ein 1 / f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) ca. N1 / 6F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1 / sqrt von dort. Ndash Massimo Jan 17 um 2: 08Moving Durchschnitt Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende mittlere Filter nicht ein Band von Frequenzen von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SidebarVariationen auf dem Moving Average Moving-Average-Filter ist mehr oder weniger perfekt zum Glätten von Daten in Gegenwart von Rauschen, wenn die nützlichen Informationen in Ihren Daten vollständig im Zeitbereich liegen. In diesem Fall sind Sie nicht über seine eher schlechte Leistung im Frequenzbereich interessieren. Fig. 1 zeigt die Impuls-, Schritt - und Frequenzreaktionen des grundlegenden gleitenden Durchschnittsfilters (mit drei zusätzlichen Abtastwerten auf beiden Seiten, die nicht Teil des Impulses und der Schrittantworten sind, zur Klarheit). Manchmal müssen Sie jedoch mit Daten arbeiten, für die beide Domänen wichtig sind. Für diese Fälle gibt es gewichtete Versionen des gleitenden Mittelwerts, die im Zeitbereich mehr oder weniger gleichwertig sind, jedoch eine wesentlich bessere Leistung im Frequenzbereich aufweisen. Wiederholte Moving Average Das erste, was Sie tun können, um die Frequenzantwort des gleitenden Durchschnittes zu verbessern, ist, es mehrmals anzuwenden. Nach zwei Wiederholungen ergibt dies eine dreieckige Gewichtung der Koeffizienten (Abbildung 2). Da das Anwenden des gleichen Filters zweimal seine Wirkung verdoppelt, ist die erste Seitenkeule des Frequenzgangs nur halb so hoch wie diejenige von Fig. 1. Der Grund für die dreieckige Form ist, daß der gleitende Durchschnitt eine Faltung mit einem rechteckigen Impuls ist. Das zweimalige Anlegen bewirkt eine Konvolution dieses Rechteckimpulses mit sich selbst, was zu einem dreieckigen Fenster für den kombinierten Filter führt. Man beachte, daß Ive die gleiche Filterlänge in Fig. 2 wie in Fig. 1 genommen hat, wodurch die erste Null des Frequenzgangs verschoben wird. Eine echte Faltung des ursprünglichen rechteckigen Filters hätte zu einem längeren Filter geführt und die Nullen natürlich genau an derselben Stelle gehalten. Wenn der gleitende Mittelwertfilter mehrfach wiederholt wird, konvergieren seine Koeffizienten aufgrund des zentralen Grenzwertsatzes zu einem Gaußschen Fenster (Fig. 3). Natürlich erstreckt sich ein tatsächlicher Gaussian unendlich in beide Richtungen, so dass es keine andere Möglichkeit gibt, als es an einem gewissen Punkt zu schneiden (oder es vielleicht mit einem zweiten Fenster zu multiplizieren). Zusätzlich muss die Standardabweichung des Gaussian gewählt werden. Für diese Darstellung (und für die Implementierung des Filter-Designers) habe ich die Standardeinstellungen von MATLAB übernommen. In der Praxis möchten Sie vielleicht einfach wiederholt den gleitenden Durchschnitt anstatt ein Gaußfenster anwenden. Wenn es rekursiv umgesetzt wird, ist der gleitende Durchschnitt sehr effizient. Während das Gaußsche Fenster durch Faltung implementiert werden muß. Blackman-Fenster Eine andere Möglichkeit ist, eine der klassischen Fensterfunktionen auszuwählen, die für Fenster-sinc-Filter verwendet werden, und verwenden Sie diese als Filterkernel (siehe die ausgezeichnete Wikipedia-Seite auf Fensterfunktionen). Als Beispiel wählte Ive das Blackman-Fenster (Abbildung 4). Dies verbessert die Stoppbanddämpfung noch weiter und zeigt trotzdem eine glatte Zeitbereichsantwort ohne Klingeln oder Überschwingen. Abschließend, wenn Sie Daten glatt, aber eine bessere Frequenz Leistung als die grundlegenden gleitenden Durchschnitt zu bieten haben, sind mehrere Alternativen zur Verfügung. Filter Design Tool Dieser Artikel wird mit einem Filter Design Tool ergänzt. Experimentieren Sie mit den verschiedenen Fensterfunktionen und der Länge des Filters und sehen Sie den Effekt auf den Frequenzgang. Probieren Sie es jetzt

No comments:

Post a Comment